What is undecidable problem in automata theory?
A problem is undecidable if there is no Turing machine which will always halt in finite amount of time to give answer as ‘yes’ or ‘no’. An undecidable problem has no algorithm to determine the answer for a given input.
Can undecidable problem be solved?
Definition: A decision problem is a problem that requires a yes or no answer. Definition: A decision problem that admits no algorithmic solution is said to be undecidable. No undecidable problem can ever be solved by a computer or computer program of any kind.
How do you show an undecidable problem?
For a correct proof, need a convincing argument that the TM always eventually accepts or rejects any input. How can you prove a language is undecidable? To prove a language is undecidable, need to show there is no Turing Machine that can decide the language. This is hard: requires reasoning about all possible TMs.
What is Decidability explain any two undecidable problems?
A decision problem P is undecidable if the language L of all yes instances to P is not decidable. An undecidable language may be partially decidable but not decidable. Suppose, if a language is not even partially decidable, then there is no Turing machine that exists for the respective language.
Are undecidable problems unsolvable?
An undecidable problem is one for which no algorithm can ever be written that will always give a correct true/false decision for every input value. Undecidable problems are a subcategory of unsolvable problems that include only problems that should have a yes/no answer (such as: does my code have a bug?).
How is a problem undecidable?
In computability theory, an undecidable problem is a type of computational problem that requires a yes/no answer, but where there cannot possibly be any computer program that always gives the correct answer; that is, any possible program would sometimes give the wrong answer or run forever without giving any answer.
What makes a language undecidable?
For an undecidable language, there is no Turing Machine which accepts the language and makes a decision for every input string w (TM can make decision for some input string though). A decision problem P is called “undecidable” if the language L of all yes instances to P is not decidable.
Why are some problems undecidable?