What is the structure of the magnetic train?
The vehicle magnets are superconducting coils around horseshoe-shaped iron cores. The pole faces are attracted to iron rails on the underside of the guideway. Nonsuperconducting control coils on each iron-core leg modulate levitation and guidance forces to maintain a 1.6-inch (40 mm) air gap.
What are the main components of a magnetic levitation train?
A maglev system comprises five major components, namely levitation, guidance, input power transfer, propulsion and control systems, as shown in Fig. 3. Levitation force provides the upward lift to the vehicle, whereas propulsion force is responsible for propelling the vehicle forward.
Can magnets and copper wire produce electricity?
Magnetic fields can be used to make electricity Metals such as copper and aluminum have electrons that are loosely held. Moving a magnet around a coil of wire, or moving a coil of wire around a magnet, pushes the electrons in the wire and creates an electrical current.
What kind of magnetic field does a maglev train have?
There are also electromagnets on the train rails specially designed for maglev trains. The electromagnet is a magnet with a magnetic field created by the electric current passing through a wire.
What are the basics of magnetic levitated trains?
The Basics of Magnetic Levitated Trains (Maglev) Magnetic levitation (maglev) is a relatively new transportation technology in which non-contacting vehicles travel safely at speeds of 250 to 300 miles-per-hour or higher while suspended, guided, and propelled above a guideway by magnetic fields. The guideway is the physical structure along which
How are magnets used to propel a train?
The magnets employed are superconducting, which means that when they are cooled to less than 450 degrees Fahrenheit below zero, they can generate magnetic fields up to 10 times stronger than ordinary electromagnets, enough to suspend and propel a train.
Who was the first person to invent a magnetic train?
In 1934, a German man by the name of Hermann Kemper was given a patent for the first concept of a magnetic, levitating train (Yadav, 2013). It wasn’t until the 1960s that the idea really began to manifest.